
IOP PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION

Plasma Phys. Control. Fusion 52 (2010) 095002 (17pp) doi:10.1088/0741-3335/52/9/095002

Port hole perturbations to the magnetic field in MST

P J Fimognari1, A F Almagri1, J K Anderson1, D R Demers2, J S Sarff1,
V Tangri1 and J Waksman1

1 Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
2 Rensselaer Polytechnic Institute, Troy, NY 12180, USA

E-mail: fimognari@wisc.edu

Received 26 February 2010, in final form 23 June 2010
Published 19 July 2010
Online at stacks.iop.org/PPCF/52/095002

Abstract
Axisymmetric magnetic equilibrium reconstruction is insufficient for
describing several effects in the Madison Symmetric Torus (MST). Inclusion
of the field error produced by port holes in the close-fitting conducting vacuum
chamber enables accurate interpretation of data from several subsystems, in
particular, ion trajectories of a heavy ion beam probe and radial displacement
and distortion of power deposition from RF antenna heating. In this work, an
analytic solution for the magnetic field error produced by a port hole is added
to the equilibrium. Without inclusion, the beam trajectory can deviate by over
a centimeter (on the order of the detector width) at the analyzer apertures. In
addition, the deposition layer for an electron Bernstein wave is strongly altered
up to one port diameter away from the port hole.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper we analyze the perturbation of a port hole on the magnetic field in the Madison
Symmetric Torus (MST) reversed-field pinch device. The primary motivation for this work
has been to improve the accuracy of the ion beam trajectory simulation of the heavy ion
beam probe (HIBP) [1, 2] through the MST plasma (MST) [3]. MST is a reversed-field pinch
toroidal confinement device with a major radius of 1.5 m and a minor radius of 0.52 m, capable
of operating at a plasma current of up to 600 kA. It has a 5 cm thick aluminum shell, with a
number of small port holes for diagnostic access to the plasma. A HIBP measures quantities in
the plasma interior by injecting a beam of singly charged heavy ions which are deflected by the
confining magnetic field. A fraction of the beam is ionized to a doubly charged state, passes
through an exit port and into an electrostatic energy analyzer. A 45 keV potassium ion beam
through a MST discharge with a 380 kA peak plasma current and 4 kG equilibrium magnetic
field is used as an example herein. Perturbations of the magnetic field must be accounted for
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to accurately determine the beam path and the sample volume location. A second motivation
for understanding the local magnetic perturbation due to a port hole is the coupling of RF
antennas to the plasma. Electron Bernstein wave (EBW) deposition is strongly influenced, in
that both the optimal launching frequency and deposition layer are altered by port field errors.
In addition, probes affected by magnetic fields can benefit from a more precise accounting of
the magnetic field in their immediate vicinity.

A magnetic field error is defined as any non-symmetric component of the local magnetic
field. One source of magnetic field errors are perturbations in the flow of wall currents caused
by diagnostic ports. A number of studies have considered the effect of magnetic field errors
on particle transport and confinement [4–13]. Some have concentrated on studying the field
errors within the plasma, as the control of these provides improvement to confinement. Fewer
have considered the effect of a port field error. To date, the estimations or approximations of
this issue have been largely concerned with the influence on the bulk plasma behavior, i.e. the
far-field limit of the port field error [8–13]. Alternatively, it is advantageous to have a model
that accurately predicts both the near- and far-field effects.

Detailed ion trajectory calculations are required to determine accurately the measurement
sample volume for the HIBP. For systems where the magnetic field is determined primarily by
magnet windings, this is straightforward and need only be performed each time major system
parameters are changed. However, in MST, the magnetic field is largely generated by current
within the plasma, and it is important to track the motion of the sample volume as it changes
within a single discharge, between discharges, and in different plasma conditions. It is useful
to be able to include corrections due to the port field error in the trajectory calculation, without
having to do an FEM solution in addition to an equilibrium reconstruction for each set of
conditions. An analytic solution meets this goal while also improving the computational time
of the trajectory calculation, as it is more efficient than the storage and interpolation of large
3D arrays that would be necessary to determine the effect of the port field using computational
solutions.

In all cases of MST operation, there is a large current that flows in the wall of the aluminum
vacuum vessel. This current provides passive control of the plasma equilibrium position. A
smaller driven wall current provides a weak toroidal field component. We treat the effect of the
port hole as a perturbation to the otherwise axisymmetric magnetic field. Since the majority
of the current in the wall is an image of the global plasma current in the core, this is a good
approximation. While our focus here is the local perturbation of the magnetic field, the analytic
solution presented below nevertheless provides an estimate of the perturbed vacuum magnetic
field throughout the plasma volume. Analysis of magnetic island formation within the core
plasma would require such an estimate (as well as analysis of the plasma response), but this
topic is beyond the scope of this paper.

The primary assumptions behind the calculation presented below are as follows. First,
the scale length of the equilibrium field near the port is larger than the port itself. Second the
port radius is much smaller than the minor radius of the conducting shell, when the model
is adjusted to the MST toroidal coordinate system. Finally, effects associated with perturbed
plasma current are ignored, since the port hole error has negligible impact on the global current
flowing in the plasma core. The magnetic field perturbation falls exponentially on a scale of
the diameter of the port hole.

An outline of this paper is as follows. Section 2 develops the model in planar coordinates
from the solution to a boundary-value problem and introduces a correction based on finite
shell conductivity. Section 3 maps this solution to a toroidal coordinate system used on MST.
Section 4 shows a comparison between the fourier decompositions of both the analytic solution
and a finite element simulation. Section 5 validates the model against measurements taken
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Figure 1. Planar solution geometry. A port with radius a located on a conducting plane. x′, y′ and
z′ are orthonormal and originate at the center of the port, with z′ = 0 as the delimiter between the
uniform equilibrium magnetic field region and the conducting plane. ρ and φ are the radial and
azimuthal coordinates with respect to the hole.

around a MST diagnostic port using a toroidal field. Section 6 shows the effect of the port field
error on HIBP trajectory calculations. Section 7 describes the effect of the port field error on
EBW optimal launch frequency and deposition layer. Section 8 provides the conclusions and
summary of this paper.

2. Solution in plane geometry

This model starts from a boundary-value problem, solving for the effect of a circular hole
in a perfectly conducting plane with a uniform magnetic field on one side. Figure 1 shows
this geometry and a coordinate system which will be subsequently referred to as the port
coordinate system. The slowly varying magnetic field has a magnitude of B0(t) and is taken
to be oriented in the ŷ ′ direction. At any given time, the scalar magnetic potential in this case,
following [14], is

#total(x
′, t) =





−B0(t) y ′

µ0
+ #1(x′, t) z′ ! 0,

−#1(x′, t) z′ < 0.

(1)

This potential satisfies Laplace’s equation, and with the following boundary conditions,

#total continuous across z = 0 for 0 " ρ < a,

∂#total

∂z
= 0 at z = 0 for a < ρ < ∞,

(2)

the perturbation potential of the hole, #1, can be given in terms of Bessel functions Jν(u), as

#1(x′, t) = 2
π

B0(t)

µ0
a2 sin(ϕ)

√
π

2

∫ ∞

0
J 3

2
(ka) e−k|z′| J1(kρ)

dk

k
. (3)

Applying formula 6.752.4 in [15] gives a simplification of integrals of the general form
of (3), and we find

#1(x′, t) = B0(t)

µ0

ρ sin(ϕ)

π

[

−a

l

√
1 −

(a

l

)2
+ sin−1

(a

l

)]

, (4)
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with l given by

l(x′) = 1
2 (

√
(a + ρ)2 + (z′)2 +

√
(a − ρ)2 + (z′)2). (5)

The formulae for the perturbation magnetic field are then

(Bx ′ = B0(t) sgn(z′)
x ′y ′

πρ l4

a3
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l

)2
×
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)

, (6)

(By ′ = B0(t) sgn(z′)
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πρ l4
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√
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l
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1
π

(
a
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(a

l

))

, (7)

and

(Bz′ = B0(t) sgn(z′)
y ′z′

π l4

a3

√
1 −

(a

l

)2
×

(
1

√
(a + ρ)2 + (z′)2

+
1

√
(a − ρ)2 + (z′)2

)

. (8)

In the above equations, the sgn(z′) function is defined as

sgn(z′) =
{

+1 z′ ! 0,

−1 z′ < 0.
(9)

While equations (6)–(8) are continuous for all space, there are several singularities when
implementing this solution computationally; the behavior of the function at each of these
locations can be determined. The x̂ ′ and ŷ ′ components are affected by two singularities, one
which occurs when l = a , in other words, when z′ = 0 and ρ " a. Then,

(Bx ′ = 0 (10)
and

(By ′ = − 1
2B0(t). (11)

The other singularity occurs when ρ = 0. In that case,
(Bx ′ = 0 (12)

and

(By ′ = B0(t) sgn(z′)
1
π

(
a

l

√
1 −

(a

l

)2
− sin−1

(a

l

))

. (13)

When z′ = 0 and ρ " a, as a/l = 1 in this situation, so (Bz′ has an indeterminant value. For
small z, we can expand (5) to give

l ≈ a +
(z′)2
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Figure 2. By′ and Bz′ vectors. The shaded region denotes the conducting shell, with the upper
shaded region indicating the depth to which the field diffuses. One hundred plates were used to
simulate the diffusion, spaced evenly from z′ = 0 to z′ = −2 cm. y′ and z′ are in the port coordinate
system as defined in figure 1.

Inserting (15) into (8) gives

(Bz′ ≈ B0(t)
y ′

π

2
√

a2 − ρ2
. (16)

which has the correct behavior for the perturbation field to be continuous everywhere.
This solution is valid for a infinitely thin, perfectly conducting shell. In order to adapt it

for the effect of diffusion of the field into an imperfect conductor, a linear superposition of a
large number, N , of shells in the −ẑ′ direction is used, with the field normalization for each
plate falling off exponentially. This gives a total perturbation field of

(Bu =
∑N

n=1 (Bu(z
′ → z′ − z′

n)e
z′
n/δ

∑N
n=1 ez′

n/δ
, u ∈ {x, y, z}, (17)

where δ is the shell skin depth. Figure 2 shows the vector plot of By ′ and Bz′ vectors in the
x ′ = 0 plane. Here, the port radius is 5.7 cm, the wall thickness is 5 cm and the skin depth
is 0.4 cm (for a time scale of 2 ms in a 6063 aluminum shell, a typical time scale in MST).
The Alfvénic time scale for a MST shot is on the order of 1 µs, much smaller than the rate
of change of the mean equilibrium field. These values are representative of the dimensions
and conditions at the HIBP exit port on MST. The vector plot shows that at approximately one
port diameter from the center of the port, the perturbation has dropped to a negligible level. It
also suggests that beam trajectories passing near the edge of the port may experience a larger
deflection due to the port field error than those passing near the center.

3. Approximation for toroidal geometry

To approximate the port field error in a toroidal device like MST, the toroidal and poloidal
magnetic fields must be included. Here we solve the case for one circular port that is normal
to the MST vessel, reflective of most MST ports (we could also approximate elliptical ports,
or ports not orientated normal to the device surface with relative ease). This is accomplished
by treating each component of the field separately and summing the resulting magnetic fields.
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Figure 3. Top down (lower) and poloidal cross-section (upper) MST geometry in both Cartesian
(X, Y, Z) and toroidal (R, φ, θ) coordinates. R0 and a0 are the major and minor radii of the torus.

Figure 3 shows the Cartesian and toroidal coordinate systems used to describe the geometry
of MST. For the rest of this work, this coordinate system is denoted as MST coordinates.

The coordinate mapping necessary to approximate the perturbation due to a toroidally
oriented equilibrium magnetic field near a port is given by

x ′ → a0(θ − θ0), (18)

y ′ → (a0 cos(θ) + R0)(φ − φ0), (19)

z′ → r − a0, (20)

where R0 and a0 are the major and minor radii of MST and φ and θ are the toroidal and
poloidal coordinates. We define the port to be located at (a0, θ0, φ0). This approximation is
most accurate when the radius of the hole is much less than the minor radius of the device,
as is the case for the diagnostic ports of MST. The largest ports on MST have a radius of
5.7 cm and are used by the HIBP and the EBW RF antenna. The coordinate mapping for a
perturbation due to a poloidally oriented equilibrium magnetic field simply swaps the x̂ ′ and ŷ ′

coordinate transforms. Since the RFP equilibrium is helical, inclusion of toroidal and poloidal
perturbations is necessary to describe the port effect. The sum of these gives

(Br = #0
r − a0

π l4

a3

√
1 −

(a

l

)2

[
1
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+
1
ln

]
, (21)
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Figure 4. Poloidal magnetic field vectors in MST. The unperturbed field is produced by a MSTFit
equilibrium reconstruction. R and Z are MST coordinates from figure 3. The darker shaded region
corresponds to the diffusion region, as in figure 2.

and

(Bφ = #0
(a0 cos(θ) + R0)(φ − φ0)

πρ l4

a3

√
1 −

(a

l

)2

[
a + ρ

lp
− a − ρ

ln

]

+
Bφ0

π
sgn(r − a0)

[
a

l

√
1 −

(a

l

)2
− sin−1

(a

l

)]

, (23)

with

#0(x
′, t) = [Bφ0(t)(a0 cos(θ) + R0)(φ − φ0) + Bθ0(t)a0(θ − θ0)] × sgn(r − a0), (24)

ρ(φ, θ) =
√

a2
0(θ − θ0)2 + (a0 cos(θ) + R0)2(φ − φ0)2, (25)

lp(x′) =
√

(a + ρ)2 + (r − a0)2, (26)

ln(x
′) =

√
(a − ρ)2 + (r − a0)2, (27)

and

l(x′) = 1
2 (lp + ln). (28)

These perturbations are corrected for non-perfect conductivity in the shell by the same
method as in (17), with stacking in the +r̂ direction, to more accurately represent the physical
system. The total perturbation is then

(Bu =
∑N

n=1 (B(a0 → a0 − an) e−an/δ

∑N
n=1 e−an/δ

, u ∈ {x, y, z}. (29)

Figure 4 shows the poloidal magnetic field vectors near a 5.7 cm MST diagnostic port, with
the same parameters as used in figure 2. The background field in this case is produced with a
MSTFit equilibrium reconstruction [16] and is shown in figure 5.
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Figure 5. Reconstructed toroidal and poloidal equilibrium magnetic fields of MST used for figure 4.
R is the MST major radius coordinate from figure 3.

4. Comparison with finite element calculation

To assess the affect of the field error of a single port on a purely toroidal vacuum magnetic
field, a magnetostatic ANSYS finite element calculation was performed. The major radius of
the toroidal configuration simulated was 1.5 m and the minor radius 0.47 m. A single 5.7 cm
radius port was positioned at (φ0, θ0) = (0◦, 0◦). The ANSYS solution was interpolated in
both the θ and φ directions with a 0.5◦ resolution and the result was decomposed into the
Fourier spectrum, given as

f (x) = a0

2
+

∑
an cos

(
nπx

2

)
+

∑
bn sin

(
nπx

2

)
, (30)

with an as the Fourier cosine series coefficients and bn as the Fourier sine series coefficients.
This was then compared with the results of a Fourier decomposition of the analytic
model.

Figures 6 and 7 show the Fourier spectrum in the toroidal and poloidal directions,
respectively, 1 cm inboard from the port. For figure 6, the path of integration was located
at θ = 0◦, the center of the port, where the port field error in the radial direction is strongest.
The field error is antisymmetric with respect to the port in the toroidal direction, leading to
only nonzero bn components of the spectrum. In figure 7, the path of integration was located at
φ = 1.5◦, near the edge of the port, where the port field error in the radial direction is strongest.
The field error is symmetric with respect to the port in the poloidal direction, leading to only
nonzero an components of the spectrum. In both cases, the agreement between the ANSYS
calculation and the analytical model is very good. Small deviations between the FEM solution
and the analytic model can be due to the uncertainty in the interpolated path for integration of
the finite element grid. The grid has a mean node density of approximately 27 cm−3, which
causes the grid to be very coarse far from the port hole. By applying the symmetry of the
system, we know that an in figure 6 and bn in figure 7 must both identically be zero. Since
the deviations in an and bn in both figures are on the same order, we can assume that they are
attributable to the same source.

8



Plasma Phys. Control. Fusion 52 (2010) 095002 P J Fimognari et al

Figure 6. Fourier decomposition (in the toroidal, φ, direction of the effect of a single 5.7 cm radius
port located at (ρ0, φ0, θ0) = (47 cm, 0◦, 0◦) of the radial magnetic field. The integration path
depicted passes through the center of the port in the toroidal direction, 1 cm inboard in the radial
direction. The resolution in both the θ and φ directions is 0.5◦ and in the ρ direction is 1 cm. Solid
lines indicate the analytic model prediction and symbols indicate the ANSYS calculation

5. Validation of the model

Experimental measurements have been made of the radial magnetic field of MST at a 5.7 cm
radius diagnostic port when a toroidal field in vacuum is applied to the device. The magnetic
field probe used contained seven tips arranged linearly and spaced at half inch intervals from
the center of the port. Figure 8 shows comparisons between the model presented in section 3
and the radial field measurements for six angular probe orientations at a 0.4 cm insertion
depth from the inner wall of MST toward the plasma region. Here, the skin depth is taken
as 0.8 cm, corresponding to the rise rate of the MST toroidal field. These comparisons are
made during the ramp phase of the toroidal field, 7.5 ms before the peak. Using the port
coordinate system described by figure 1, measurements were performed with values of ϕ (the
port azimuthal angle) of 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦. These measurements are normalized
to the measured toroidal field and the port radius. Each measurement and model pair is labeled
with the angle relative to the port at which it was measured or calculated, and x ′/a position is
relative to the center of the port.

Figure 9 shows another comparison between the model and data. The probe array was
aligned at ϕ = 90◦ and stepped into the plasma in 1 cm intervals. As the probe is moved
deeper into the plasma, the measurements indicate that the perturbation field falls off as the
model predicts. The inner surface of MST is located at z′ = 0, positive z′ values indicate

9
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Figure 7. Fourier decomposition (in the poloidal, θ , direction of the effect of a single 5.7 cm radius
port located at (ρ0, φ0, θ0) = (47 cm, 0◦, 0◦) of the radial magnetic field. The integration path
depicted passes near the edge of the port (at φ = 1.5◦) in the poloidal direction, 1 cm inboard in
the radial direction. As in figure 6 the resolution in both the θ and φ directions is 0.5◦ and in the
ρ direction is 1 cm. Solid lines indicate the analytic model prediction and symbols indicate the
ANSYS calculation.

probe insertion deeper within MST. As in figure 9, these comparisons are made 7.5 ms before
the peak of the toroidal field. The data in both figures are shown as symbols and the model
results are shown as lines. These figures show that the model is in good agreement with the
measurements at each rotation angle and insertion depth.

6. HIBP trajectories with port field errors

The HIBP injects a singly charged (primary) ion beam into the plasma through a 2.5 cm radius
(entrance) port and detects the doubly charged (secondary) ion beam at a 5.7 cm radius (exit)
port. The port field errors have a cumulative effect on the beam trajectory, which causes
displacement of the sample volume in the plasma and the impact location of the beam on the
detector plane. The port field perturbation deflects all beam trajectories, but it is greatest when
the beam passes near the edge of the port. Figure 10 shows two HIBP trajectories in the MST
geometry, one through the edge regions of the entrance and exit ports and another through the
center regions of the ports. Both the primary and secondary ion beams are shown. The port
field error at the small HIBP entrance port is weaker than that of the exit port and acts on singly
charged ions. The larger port field error due to the exit port, which also acts on doubly charged
ions, will thus have a greater effect on the beam trajectory.

10
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Figure 8. Model predictions (lines) and MST measurements made 4 mm inside the inner surface
of MST at different probe insertion angles. x′/a (see figure 1) is relative to the center of the port.
Lines indicate predictions and symbols indicate measurements.

Figure 9. Model predictions (lines) and MST measurements made at various radial insertion
distances at a ϕ = 90◦ rotation angle. y′/a (see figure 1) is relative to the center of the port. Lines
indicate predictions and symbols indicate measurements.

Figure 11 shows the port perturbed (dashed lines) and unperturbed (solid lines) trajectories
within the HIBP detection beamline. The detection beamline contains three pairs of
electrostatic sweep plates (outlined and shaded in the figure) that redirect the secondary
beam to the entrance apertures of an electrostatic analyzer (shown as gaps in the boundary
at zSBL = 137 cm). Each pair, (a)–(b) and (c)–(d), illustrates orthogonal projections
of the beamline, with xSBL largely in the toroidal direction and ySBL in the poloidal
direction.

The deflection of the beam at the rightmost electrostatic sweep plate pair is due to an applied
sweep voltage. The upper pair (a)–(b) illustrates a simulation with the primary and secondary

11
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Figure 10. Poloidal (top) and toroidal (bottom) projections of HIBP trajectories through a MST
plasma. The primary and secondary pairs are calculated for beams injected near the center and
the edge of the entrance port through a magnetic field that includes the port field error. The x,
y, R and z are MST coordinates, taken with the HIBP entrance port at y = 0. Crosses are used
to designate the center of the sample volume locations (where the primary and secondary beams
intersect).

beams passing near the center of the entrance and exit ports. In this case, the beam at the
analyzer entrance aperture is displaced 0.88 cm in the x̂SBL (toroidal) direction from a trajectory
calculated without inclusion of the port field error. When projected out to the detectors, this
corresponds to a change of 1.20 cm. The combined poloidal and toroidal path variations
move the sample volume (in MST coordinates) of (|(x|, |(y|, |(z|) = (0.20, 0.43, 0.34) cm,
for a total change of 0.58 cm. The lower pair (c)–(d) illustrates the primary and secondary
beams passing nearer the edges of the ports. The field error here is larger, but is strongest in the
direction parallel to beam travel, and thus results in a smaller deflection. However, the position
of the beam combined with the effect of the field error are sufficient to alter the trajectory from
a non-detection in the no port field error case to a detection. To illustrate the smaller deviation
due to the ports in this case, the combined poloidal and toroidal path variations move the
sample volume (in MST coordinates) of (|(x|, |(y|, |(z|) = (0.20, 0.18, 0.39) cm, for a
total change of 0.47 cm. A preliminary comparison of HIBP data (secondary ion currents on

12
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(a)

(b)

(c)

(d)

Figure 11. Poloidal (ySBL) and toroidal (xSBL) projections of beam trajectories through the HIBP
detection beamline. Pair (a) and (b) is modeled with a beam passing nearer the center of the entrance
and exit ports, and pair (c) and (d) with a beam passing nearer the edges of the ports. The xSBL, ySBL
and zSBL are HIBP coordinates, with the center of the exit port at (xSBL, ySBL, zSBL) = (0, 0, 0).
Solid and dashed lines indicate, respectively, trajectories without and with the port error included.

the detectors) with trajectories computed with and without the port field error model suggests
improved agreement when the port error is included.

Deviations on this order can have a significant affect on the interpretation of beam probe
data. For accurate determination of electric potential and potential and density fluctuations, it
is important to have the HIBP detections as near the center of the detector sets as possible. As
shown by figures 11(c) and (d), the port field error can cause a change in trajectory calculation
from non-detection to detection in some cases and in cases where there is a successful trajectory
calculation with and without port field error, there is a significant motion (>1 cm) at the HIBP
detectors. This is enough of a change in position to move the ion signal from being roughly
centered on the detector to one side or the other. The motion of the sample volume due to the
port field is likewise essential for accurate determination of the radial electric field from HIBP
measurements.
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Figure 12. First (fECR) and second (2fECR) harmonic electron cyclotron resonance frequency
profiles for equilibria at two plasma currents. Solid lines show profiles for unperturbed equilibria,
dotted lines show the profiles for the corrected field. Also sketched is the EBW antenna at the
3.6 GHz launching frequency. The accessible region for 3.6 GHz launch is r/a0 > 0.86 for the
300 kA case, while only r/a0 > 0.95 for the 200 kA case.

7. EBW launch given port field errors

The distortion of the equilibrium magnetic field has significant implications on RF heating
and current drive in MST. First, as a steep edge density profile is crucial to efficient coupling
of the externally launched electromagnetic wave to the EBW [17], the perturbation of flux
surfaces in the antenna near field has a deleterious effect on the coupling. Furthermore, even
with the antenna retracted slightly behind the MST wall, a dielectric antenna cover acts as
a limiter and modifies the local density profile in a fashion that improves coupling [18]. A
second concern is that the magnetic field error from the large (a/a0 ≈ 10%) port reduces
accessibility as illustrated in figure 12. The EBW is strongly damped at the first or second
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Figure 13. First (fECR) and second (2fECR) harmonic electron cyclotron resonance frequency
profiles for a 300 kA equilibria. Solid lines show profiles for unperturbed equilibria, dotted and
dashed lines show the profiles for the field when perturbations from various sized ports are included.
Also sketched is the EBW antenna at the 3.6 GHz launching frequency, as well as vertical lines
indicating the depth of penetration of the EBW layer for each port. The accessible region for
3.6 GHz launch is r/a0 > 0.89 for the case of a port radius 5% of the minor radius, r/a0 > 0.86 for
a port radius 10% of the minor radius and r/a0 > 0.84 for a port radius 15% of the minor radius.

harmonic of the electron cyclotron resonance, whose positions are determined by the strength
of the magnetic field, fECR = 27.9 GHz · |B|. Considering an unperturbed equilibrium field,
fundamental EBW heating for an optimized magnetic field strength allows resonant heating
between r/a0 ≈ 0.45 and r/a0 ≈ 0.99, where access to the plasma core is blocked by the
second harmonic resonance layer. Consideration of the total field (including port perturbation)
alters the location of the first and second harmonic resonance layers, and the accessibility for
optimized launch parameters is decreased from r/a0 ≈ 0.79 to r/a0 ≈ 0.99.

Figure 12 shows the effect of including the port field error in the calculation of the optimal
EBW launching frequency and estimated deposition layer for 200 and 300 kA plasma current
in MST. This suggests that for optimal deposition at a given launch frequency, the plasma
current needs to be altered from that assumed by the unperturbed equilibrium. It also shows
the dramatic decrease in size of the available deposition layer between the two harmonics.
Figure 13 depicts the change in EBW deposition layer for three port radii. As the port radius
increases, the depth of the EBW deposition layer increases. For ports with radii 5%, 10% and
15% of the machine minor radius, the EBW deposition penetrates to r/a0 = 0.89, 0.86 and
0.84, respectively, for a plasma current of 300 kA. The 10% case approximates the experimental
situation for the EBW antenna installed on MST.

Figure 14 shows the magnetic field contours for a 300 kA equilibrium located in the plane
of the EBW system with the effect of the ports added. Near the ports shown in figure 14 it
is apparent that the field error significantly alters the contours up to approximately one port
diameter. One particularly important and initially overlooked feature is that for certain plasma
conditions, the second harmonic for 3.6 GHz launch is not within the plasma, except for the
region of reduced field due to the port hole. Second harmonic deposition then occurs in the
antenna near field, far from the expected heating location. These effects on coupling and
accessibility have been empirically observed, and with the present quantitative description of
|B|, are being incorporated into planning of upcoming experimental campaigns.
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Figure 14. Magnetic field contours for a 300 kA equilibrium taking into account the port field
errors of five ports: two 5.7 cm radius ports at ±19◦, two 2.54 cm radius ports at ±37◦ and one
1.905 cm radius port at 90◦. R and Z here are MST coordinates. The field is strongly perturbed up
to approximately one port diameter away from the port hole, recovering to the unperturbed state in
the core of the plasma.

8. Summary and conclusions

In this paper, we have shown that port field errors are of considerable magnitude to affect several
subsystems on MST and should be included in a comprehensive mean magnetic equilibrium
reconstruction. The HIBP trajectories and sample volume location can be significantly affected
by the passage through port field perturbations. An accurate calculation of the sample volume
and detection location requires a reconstructed mean magnetic field that includes a port field
error model. In addition, both the optimal launching frequency and the deposition layer
contours for EBW heating are altered, suggesting new experimental operating conditions for
upcoming campaigns.

In order to accurately model the perturbation due to a port in the conducting shell, an
analytic solution for the perturbation has been developed and validated against measurements
made on the MST RFP. This model is unique in that it aims to accurately represent the magnetic
field effect in both the near-field and far-field regions. It can be readily adapted to any plasma
confinement system with ports in a conducting wall and a time-changing magnetic field; so
long as the port scale is smaller than the device scale, the unperturbed mean magnetic field is
roughly constant over the port opening, and there is relatively low density near the conductor.
The model shows excellent agreement with magnetic probe measurements taken near a 5.7 cm
radius MST diagnostic port, as well as with finite element calculations.
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